Just by cleaning up emissions from transport, the electrical grid, and buildings, says Stokes, “we can get the vast majority of this problem done.”

There are, of course, complicating factors. The benefits of a green grid come only if carbon-free electricity is inexpensive. While renewable energy sources like wind and sunshine are free, building capacity for wind farms and photovoltaic plants isn’t. That’s particularly true if it’s done in a hurry. Biden’s clean-grid proposal doesn’t detail how its $2 trillion of spending will be allocated, which means there’s no way to tell if the investment in cleaning up the grid will be large enough to meet the 2035 deadline.

“It would be an unprecedented nation-building effort, the type of thing we haven’t seen since the New Deal and the Work Progress Administration,” says Jesse Jenkins, an assistant professor at Princeton University’s Department of Mechanical & Aerospace Engineering. “It took us 100 years to build the current grid.’’

But Biden’s goal isn’t far from estimates supported by researchers. A recent study from the Goldman School of Public Policy at the University of California Berkeley determined that the U.S. grid could use existing technologies—solar, wind, nuclear, hydroelectric dams, and batteries—to supply 90% of its electricity needs by 2035. Existing natural gas-fired plants would still be needed to cover the rest, the researchers found.

Sonia Aggarwal, vice president at nonpartisan energy and environmental policy firm Energy Innovation and a member of the technical review committee behind the study, says the idea was to explore pathways that maximize clean energy while keeping power prices at or below their current levels. Skeptics have been proven wrong in the past, she says. “People thought the grid would break at 30% [renewable energy] and prices would hockey-stick. We’ve seen grids that have pushed well past that.”

How to get from 90% clean power grid all the way to 100% might require a rapid ramp-up in some niche technologies. “There is clearly an opportunity five to 10 years from now to displace the last 10% of the carbon emissions out of the electric sector by manufacturing hydrogen with renewables,” said Jim Robo, chief executive officer at electric-utility giant NextEra Energy Inc., during an earnings call last week. The company also announced plans to run one of its Florida power plants on green hydrogen.

Biden’s clean energy proposal would also face political resistance. It calls for shifting energy use in buildings away from natural gas, an idea already being pursued in many cities that has been fought every step of the way by the gas industry. Restaurateurs have also opposed gas restrictions since many chefs refuse to cook with electric. And while American drivers have eagerly snapped up electric vehicles made by Tesla Inc., they’ve shown far less enthusiasm for plug-in cars from other manufacturers .

Market forces could work against a push for a 100% clean grid, no matter how cheap renewables become. “As you drive substitution for gas or oil, it can make substitution harder,” says Jenkins, the Princeton professor. If a plan like Biden’s manages to push some gas plants off the grid, for instance, falling demand for natural gas could create lower prices. That would making the process of cleaning up buildings or heavy industry all the more difficult.

And yet, using federal policy to spur clean-tech innovation has the potential to create breakthroughs that would cut seemingly intractable sources of emissions. A green grid could help shift the chemical industry away from fossil fuels as raw materials for their products. Renewables would be used to break water, carbon dioxide, or other compounds into building blocks that could then be reassembled into useful products.

“Even if you go to clean energy for power plants and vehicles, we still use lots of hydrocarbons to make things,” says Daniel Kammen, director of the University of California, Berkeley’s Renewable and Appropriate Energy Laboratory, who formerly served as renewable power specialist at the World Bank. Many of these processes start to become cost effective when renewable power reaches about 4 cents per kilowatt-hour, he says. Some new solar and wind facilities can already hit that price point. “The low cost of renewables means we could get off of that. This is an opportunity to build better compounds at lower cost.”